On the stability of generalized d'Alembert and Jensen functional equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of generalized d'Alembert and Jensen functional equations

where f , g are two unknown functions to be determined. Equation (A f g), raised by Wilson, is called the Wilson equation sometimes, and (Ag f ) is raised by Kannappan and Kim [9]. Let g(x) ≡ k in (Ag f ). Then we have f (x + y) + f (x − y) = 2k f (y) for all x, y ∈ G. Putting y = 0 in this equation we have f (x)= k f (0). Hence f is a constant function. Let g(y)≡ 1 in (A f g). Then we have the...

متن کامل

the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test

in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...

15 صفحه اول

Fuzzy Stability of Jensen-Type Quadratic Functional Equations

and Applied Analysis 3 a vector space from various points of view 28–30 . In particular, Bag and Samanta 31 , following Cheng and Mordeson 32 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 33 . They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed ...

متن کامل

Non-Archimedean stability of Cauchy-Jensen Type functional equation

In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces

متن کامل

Asymptotic behavior of alternative Jensen and Jensen type functional equations

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2006

ISSN: 0161-1712,1687-0425

DOI: 10.1155/ijmms/2006/43185